
Quality Risk Ratings in Global Supply Chains

Zach Zhizhong Zhou
The Antai College of Economics & Management, Shanghai Jiao Tong University, 535 Fahuazhen Rd, Changning Dist.,

Shanghai, 200052, China, zhouzhzh@sjtu.edu.cn

M. Eric Johnson
The Owen Graduate School of Management, Vanderbilt University, 401 21st Avenue South, Nashville, Tennessee 37203, USA

Eric.Johnson@owen.vanderbilt.edu

E xtended enterprises face many challenges in managing the product quality of their suppliers. Consequently charac-
terizing the quality risk posed by value-chain partners has become increasingly important. There have been several

recent efforts to develop frameworks for rating the quality risk posed by suppliers. We develop an analytical model to
examine the impact of such quality ratings on suppliers, manufacturers, and social welfare. While it might seem that qual-
ity ratings would benefit high-quality suppliers and hurt low-quality suppliers, we show that this is not always the case.
We find that such quality ratings can hurt both types of suppliers or benefit both, depending on the market conditions.
We also find that quality ratings do not always benefit the most demanding manufacturers who desire high-quality sup-
pliers. Finally, we find that social welfare is not always improved by risk ratings. These results suggest that public policy
initiatives addressing risk ratings must be carefully considered.
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1. Introduction

The globalization of economies expands the bound-
aries of extended enterprises. Dell Inc. directly or
indirectly manages over 100 key suppliers in over 15
countries (Dell 2013). Toyota UK has 260 parts and
materials suppliers based in the UK and Europe
(ToyotaUK 2013). Global extended enterprises such
as Dell and Toyota face incredible complexity.
Among many supply chain challenges, managing the
product quality risk posed by such far-flung suppli-
ers has become increasingly difficult. In 2006, Dell
announced a recall of its notebook batteries due to
fire hazard (CPSC News 2006). More than 4.1 million
battery packs were deemed unsafe and recalled.
Sony, the supplier of these battery packs, also sold
laptop batteries to HP and Toshiba. In 2008, Sony bat-
teries were figured again as the culprit of laptops
overheating. About 100,000 Sony laptop batteries
were recalled in that year (Ogg 2008).
Toyota recalled over 12 million vehicles because of

claims of sudden acceleration (Welch 2011). The recall
was linked to the CTS Corporation, an Indiana-based
automotive supplier that makes the gas-pedals assem-
blies for Toyota. CST not only makes gas pedals for
Toyota and Chrysler, but also for Honda, Ford, and
General Motor. Chrysler was also forced to recall
35,000 Dodge and Jeep models for sticky gas pedals
made by CTS Corporation (Hirsch 2010).

As manufacturers’ source from suppliers spread
around the world, the risks posed by those suppliers
have grown. From lead paint in Mattel toys to mela-
mine contamination of Cadbury Chocolates, vendor
quality failures have touched nearly every industry.
In many cases, the quality risk was not well managed
or understood due to low supply chain visibility. The
quality risk posed by a supplier is largely determined
by how much quality risk information is disclosed.
Such quality risk information includes sourcing prac-
tices, quality practices, management capabilities,
business maturity, financial stability, quality inspec-
tion data, and quality audits. If a manufacturer is
located far from its supplier, it can be difficult for the
manufacturer to obtain reliable quality risk informa-
tion. Moreover, quality problems may be caused by
multi-tier sourcing (i.e., a manufacturer’s supplier
sources from a supplier’s supplier in a lower-tier of
the supply chain). Multi-tier sourcing increases the
length of the supply chain and increases the risk. It
reduces the accountability of product quality because
it is hard to track the quality control process of the
whole supply chain. To ensure supply reliability and
thus reduce disruption risk, a manufacturer may
source the same materials from different suppliers.
However, this too increases quality risk by introduc-
ing more failure points.
To mitigate quality risk, researchers have proposed

frameworks to manage quality risk throughout global
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supply chains, including the adoption of supplier rat-
ings. Tse and Tan (2011) proposed measuring product
quality risk in four categories: risk from supplier’s
production, supplier’s quality standard, risk from
supplier’s logistics service, and product quality risk
visibility. Van Weele (2009) suggested that a manufac-
turer assess its supplier’s product quality at four
levels: product level, process level, quality assurance
system level, and company level. The product level
focuses on inspecting incoming products and estab-
lishing the quality level of incoming products. The
process level examines whether the quality proce-
dures in production are under control. The quality
assurance system level checks the way in which pro-
cedures regarding quality inspection are developed,
kept up-to-date, maintained, and refined. The com-
pany level considers both quality aspects and finan-
cial performance aspects.
Professional quality risk rating services, focused on

global manufacturing suppliers, are offered by a num-
ber of firms such as Trivista and Asia Inspection.
Some industries are making efforts to develop com-
mon quality risk assessments. The Quality Certifica-
tion Alliance (QCA), which was formed in 2008 by
major promotional product sellers, aims to “elevate
the standards by which industry firms that import
and/or manufacture promotional products provide
consistently safe, high-quality, socially compliant and
environmentally conscientious merchandise” (QCA
2011). Service industries also face similar vendor risk.
For example, in the financial industry, major banks
have been developing a common information risk
assessment to rate the risk posed by vendors (Johnson
et al. 2009). In both manufacturing and services,
many large customers often source from a limited
number of suppliers (e.g., CTS selling gas pedals to
Toyota, Honda, GM, and Chrysler). Thus a shared
quality risk assessment helps both suppliers and their
customers avoid redundant and repeated assess-
ments.
Note that the professional quality risk assessments

or ratings that we consider in this study are not sim-
ply certifications. For example, the ISO 9000 series of
certifications have been widely adopted throughout
the world (Albuquerque et al. 2007). Such certifica-
tions both improve quality and provide quality sig-
nals for customers. However, such binary measures
do not provide an ongoing measure of quality risk. In
this study, we consider a professional risk rating that
is more similar to a bond rating, where risk is
accessed and updated on a regular basis. Moreover,
the risk we consider is a quality failure that causes a
significant financial loss for the manufacturer such as
a recall.
Given the similarities, it is tempting to equate qual-

ity risk rating with ratings of financial instruments.

However, quality ratings are quite different from
bond or credit ratings (which measure the default
probability for a debt issuer). A good credit rating
generally enables the debt issuer to raise money from
financial markets at a lower cost (Kliger and Sarig
2000). However, a good quality rating may not
directly benefit a high-quality supplier because the
quality rating may have subtle impacts on the compe-
tition among suppliers, the incentives to improve
quality levels and reduce the risk of recall, and the
prices charged to manufacturers. In this study, we
focus on the following research questions:

• Does quality risk rating always benefit the
high-quality supplier (or hurt the low-quality
supplier), as the prior literature on finance pre-
dicts? If not, how does quality rating affect
different suppliers under different market
conditions?

• Does quality risk rating always benefit the
most demanding manufacturers who desire
high-quality business partners?

• Does quality risk rating increase social wel-
fare?

We develop an analytical model to examine the
impact of quality risk ratings on suppliers, manufac-
turers, and social welfare. We do this by comparing
two cases: (1) the case where a professional quality
risk rating is provided (e.g., by QCA), and (2) the case
where manufacturers perform assessments by them-
selves. We find that quality ratings can hurt or benefit
both types of suppliers, depending on the market con-
ditions. Likewise, our analysis leads to another result:
quality ratings can hurt demanding manufacturers.
Prior results in the licensing literature showed that
improved information always benefits the high-needs
manufacturers at the cost of less demanding manufac-
turers (Shapiro 1986). We show a different result in
this study.
We begin by examining the related literature. Then

we present our model, considering two types of sup-
pliers (low and high quality) and two types of manu-
facturers (those who place low and high value on
quality). We analyze the model for the case with pro-
fessional quality ratings in section 3, then the model
for the case with manufacturer assessments in section
4. We compare the two cases in section 5. Finally, we
conclude with recommendations for researchers and
policy makers.

1.1. Literature Review
The economics literature has long studied information
revelation and signaling of quality. Akerlof (1970)
pointed out that a lack of quality information can lead
to market failures. Viscusi (1978) examined a process
of sequentially revealing the quality of firms and gave
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maximum prices that firms are willing to pay for hav-
ing their quality revealed. Leland (1979) suggested
that introducing a minimum quality standard, or
“licensing” standard can increase social welfare.
Shapiro (1983) examined a market where buyers
know product quality some time after the purchase.
He showed that a firm’s cost of establishing its reputa-
tion should be covered by gains from its established
reputation. Shapiro (1986) showed that licensing and
certification tend to benefit consumers who value
quality highly at the expense of those who do not.
Lizzeri (1999) examined strategic quality information
revelation by certification intermediaries. He pro-
vided conditions under which “certification as a mini-
mal quality standard” is an optimal choice of a
mopolist certification intermediary. He also showed
that competition among intermediaries can lead to
full information revelation.
This stream of literature generally assumed that

quality is exogenously given (Akerlof 1970, Leland
1979, Lizzeri 1999, Viscusi 1978). That is, these studies
ignored how sellers (those to be certified) respond to
quality. In contrast, the quality levels of suppliers are
endogenously determined in our study. Quality rat-
ings not only reveal information, but also influence
the incentive of the suppliers’ efforts on quality. The
other difference between our study and the prior liter-
ature is that our study considers duopoly competition
while prior literature focused on a fully competitive
market (Shapiro, 1983, 1986).
Another stream of supply chain literature has stud-

ied managing supply disruption risk in global supply
chains. G€um€us� et al. (2012) considered the risk of sup-
ply disruption in a supply chain with a single buyer, a
reliable and expensive supplier, and a cheaper but
less reliable supplier. They showed that the unreliable
supplier may use a price and quantity (P&Q) guaran-
tee contract to better compete against the more reli-
able one by providing supply assurance to the buyer.
When information asymmetry risk is high, the P&Q
guarantee contract enables the unreliable supplier to
credibly signal her true risk, thereby improving visi-
bility in the chain. Gurnani and Shi (2006) considered
a bargaining game between a buyer and a supplier
who have different estimates about supply reliability.
They computed the optimal contract P&Q, and dis-
cuss the role of using down-payment or nondelivery
penalties in the contract. Yang et al. (2009) used
mechanism design theory to design an optimal con-
tract menu offered by a manufacturer to its supplier,
who has private information about supply disruption.
They showed that the less reliable supplier chooses to
stop using backup production while the more reliable
supplier continues to use it. Subsequently, contract
choice by the supplier reveals its private information
about supplier disruption.

In contrast to this literature that focuses on supply
disruption, this study focuses on managing supplier
quality risk. Huang et al. (2006) compare vendor cer-
tification with vendor appraisal in a supply chain
with a single supplier and a single manufacturer. We
focus on quality risk ratings in a supply chain with
competing suppliers.

2. The Model

We adopt a vertical differentiation framework (see,
e.g., Bhargava and Choudhary 2008) for manufactur-
ers who have different usage utilities for products
sourced from suppliers. We model two risk-neutral
representative manufacturers sourcing a single product
(or a single batch of products)1 from their suppliers:
(1) low-type manufacturer (Manufacturer L), whose
usage utility from the product sourcing from its sup-
plier is V with V > 0, and (2) high-type manufacturer
(Manufacturer H), whose usage utility from product
sourcing from its supplier is hVwith h > 1.
A supplier exerts effort e (e� [0,1]) to increase the

quality level of its product and reduce its risk to the
manufacturer. We normalize the supplier risk, the
probability that the supplier’s product creates a recall,
to 1 � e. That is, when the supplier exerts greater
effort, it is less likely to cause a recall by the manufac-
turer. The cost of exerting effort e is assumed to be a
convex function: ce2, where c > 0 is the quality cost
parameter. When the supplier’s product fails, the
manufacturer incurs a loss proportional to its usage
utility. We use kV and khV to denote the loss of the
low-type manufacturer and the high-type manufac-
turer, respectively. In general, manufacturers do not
source from suppliers with a very high risk. There-
fore, we assume that k, the proportional loss at a
recall, satisfies 0 < k < 1/2. The effort of the lower-
quality supplier (Supplier L) is denoted by el while
the effort of the higher-quality supplier (Supplier H)
is denoted by eh (el ≤ eh).
The two suppliers engage in a two-period competi-

tion. In Period 0, the suppliers know whether they
will be rated before Period 1 and then determine their
quality levels sequentially. Supplier H is a leader
while Supplier L is a follower. In Period 1 and Period
2, both the suppliers choose their pricing strategies
and then sell their products to manufacturers. If a
professional rating is provided before Period 1, the
manufacturers will know the quality risk levels of
both suppliers (see Figure 1). However, if a profes-
sional rating is not provided before Period 1, then the
risk levels of both suppliers are unobservable to man-
ufacturers in Period 1. Thus, both suppliers appear to
be the same to manufacturers in Period 1. However,
suppliers cannot hide their quality levels forever. In
time, the manufacturers will eventually know the
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suppliers’ quality risk levels before Period 2 via the
manufacturers’ own assessments (see Figure 2). This
means that the professional quality rating agencies
are more efficient than individual manufacturers.
We assume that suppliers use a “price matching”

marketing strategy to prevent a Bertrand competition,
which drives profits to zero for both suppliers.
(Zhang 1995). The “price matching” strategy avoids a
head-to-head competition by making it impossible for
firms to steal each other’s customers by simply cut-
ting prices. Our model differs from the Bertrand com-
petition where firms set their prices only once. We
further assume that manufacturers do not know who
is the first-mover or the second-mover. Otherwise,
manufacturers may use that information to infer the
quality levels of suppliers. This assumption is reason-
able when both suppliers enter the markets at nearly
the same time.
For ease of exposition, we use pl and ph to denote

lower and higher prices charged by suppliers. pl and
ph denote the total profit of lower- and higher-quality
suppliers in both periods. Next we analyze two cases:
(1) when a quality rating is provided in Period 1, and
(2) when manufacturers perform their own risk
assessments (Table 1).

3. Competition with Quality Ratings
Provided

Quality ratings reveal the quality levels of suppliers
to manufacturers in Period 1. Hence in this case, man-
ufacturers know el and eh in both periods. The compe-
tition in Period 1 is the same as that in Period 2.
Hence, in Period 2, a supplier charges the same price
as that charged in Period 1; a manufacturer chooses
the same supplier as that chosen in Period 1. Thus, we
only need to focus on a single period.
We use Utq to denote the net surplus of a type-t

manufacturer who uses a supplier with a quality level
of q, where t = L (low-type manufacturer) or H (high-
type manufacturer); q = l (lower quality level) or h

(higher quality level). The expressions of Utq are as
follows.

ULl ¼ elðV � plÞ þ ð1� elÞ½ð1� �ÞV � pl�
ULh ¼ ehðV � phÞ þ ð1� ehÞ½ð1� �ÞV � ph�
UHl ¼ elðhV � plÞ þ ð1� elÞ½ð1� �ÞhV � pl�
UHh ¼ ehðhV � phÞ þ ð1� ehÞ½ð1� �ÞhV � ph�

We consider the pricing strategies of both manufac-
turers. If both suppliers stay in the market, then given
el, eh and eh > el, there are three possible scenarios in
equilibrium: (A1) Supplier H sells to Manufacturer H
while Supplier L sells to Manufacturer L, (A2) Sup-
plier H sells to Manufacturer H and L whereas Sup-
plier L sells Manufacturer L, (A3) Both Supplier H
and Supplier L sell to Manufacturer H.
In Case A1, Supplier H chooses a price-matching

policy to ensure that UHh = UHl + ɛ > 0 (ɛ > 0, ɛ?0
). Given Supplier H’s price matching policy, Supplier
L can never poach any customer from Supplier H
(even though it sets pl = 0). Thus, Supplier L will
choose pl such that ULl = 0 to maximize its profit. In
Case A2, Supplier H’s price-matching policy satisfies
ULh=ULl. Supplier L will set pl such that ULl = 0. In
Case A3, Supplier L chooses pl such that UHl = 0.
Supplier H chooses a price-matching policy such that
UHh = UHl. Next, we will show conditions under
which Case A1, A2 or A3 occurs in equilibrium.
The equilibrium prices in both periods only depend

on eh and el chosen in Period 0. Thus, the game in Per-
iod 2 is the same as that in Period 1. And the equilib-
rium prices in Period 2 are the same as those in
Period 1. In Case A1, we obtain pl and ph by solving
UHh = UHl and ULl = 0.

Both suppliers choose 
their effort on quality

Both suppliers choose 
their prices

Both suppliers choose 
their prices

Period 0 Period 1

Period 2 time

A professional 
rating is provided.

Figure 1 Sequence of Events When a Professional Rating is Provided

Both suppliers choose 
their effort on quality

Both suppliers choose 
their prices

Both suppliers choose 
their prices

Period 0

Period 1 Period 2 time
Manufacturers perform 
quality assessments

Figure 2 Sequence of Events When a Professional Rating is not Pro-
vided

Table 1 Table of Notation

V Low-type manufacturer’s usage utility
hV High-type manufacturer’s usage utility
k Proportional loss of a manufacturer’s utility when its supplier’s

product fails
c Quality cost parameter
eh Effort of high-quality supplier
el Effort of low-quality supplier
ph Price of high-quality supplier
pl Price of low-quality supplier
pi Introductory price of both suppliers in Period 1 when quality

risk ratings are not provided
ph Profit of high-quality supplier
pl Profit of low-quality supplier
Utq Net surplus of a type-t manufacturer who chooses a supplier

with quality of q
Utr Net surplus of a type-t manufacturer who randomly chooses a

supplier
Case NR The case where quality risk ratings are not provided in Period

1
Case R The case where quality risk ratings are provided in Period 1
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pl1 ¼ Vð1� �þ �elÞ; ð1Þ
ph1 ¼ Vh�ðeh � elÞ þ Vð1� �þ �elÞ: ð2Þ

The low-quality supplier obtains a revenue of pl1
from the low-type manufacturer in each period and
thus, its total revenue is 2pl1. Likewise, the high-
quality supplier obtains a total revenue of 2ph1 from
the high-type manufacturer. The total profits of the
high-quality supplier and low-quality supplier in
two periods can be written as follows:

pl1 ¼ 2pl1 � ce2l ¼ 2Vð1� �þ �elÞ � ce2l ; ð3Þ

ph1 ¼ 2ph1 � ce2h
¼ 2Vh�ðeh � elÞ þ 2Vð1� �þ �elÞ � ce2h: ð4Þ

In Case A2, we may obtain pl and ph by solving
ULh = ULl and ULl = 0.

pl2 ¼ Vð1� �þ �elÞ; ð5Þ
ph2 ¼ Vð1� �þ �ehÞ ð6Þ

The low-type manufacturer gets the same net sur-
plus from either buying from Supplier L or buying
from Supplier H. Thus, the low-type manufacturer
buys from either Supplier L or Supplier H with a
probability of 50% for each. When eh > el, the high-
type manufacturer gets higher net surplus from
Supplier H than from Supplier L because
ðUHh �UHlÞjph¼ph3;pl¼pl3

¼ V�ðeh � elÞðh� 1Þ[ 0. Thus,
the high-type manufacturer buys from Supplier H in
both periods. It follows that the demand for Sup-
plier H is 3 while the demand for Supplier L is 1 in
both periods. The total profits of the high-quality
supplier and low-quality supplier in two periods are

pl2 ¼ pl2 � ce2l ¼ Vð1� �þ �elÞ � ce2l ; ð7Þ
ph2 ¼ 3ph2 � ce2h ¼ 3Vð1� �þ �ehÞ � ce2h ð8Þ

Now, consider Case A3, where pl and ph can be
obtained by solving UHh = UHl and UHl = 0.

pl3 ¼ Vhð1� �þ �elÞ; ð9Þ
ph3 ¼ Vhð1� �þ �ehÞ: ð10Þ

It can be verified that the low-type manufacturer
gets negative net surplus no matter if it buys from
Supplier L or Supplier H. Thus, the low-type manu-
facturer does not buy from any supplier. Since the
high-type manufacturer gets the same net surplus
from both suppliers, it will randomly choose a sup-
plier with a probability of 50% for each. Thus, the
low-quality supplier obtains a revenue of 1

2 pl2 from
the high-type manufacturer in each period and thus,
its total revenue is pl2 . Similarly, the high-quality

supplier obtains a total revenue of ph2 from the
high-type manufacturer. The total profits of the
high-quality supplier and low-quality supplier in
two periods can be written as

pl3 ¼ pl3 � ce2l ¼ Vhð1� �þ �elÞ � ce2l , ð11Þ

ph3 ¼ ph3 � ce2h ¼ Vhð1� �þ �ehÞ � ce2h: ð12Þ
When eh = el, then they will charge the same price.

There are two possible scenarios: (A4) Both suppliers
sell to Manufacturer H and Manufacturer L, and (A5)
Both suppliers sell to Manufacturer H. In Case A4,
Supplier H will use a price-matching policy of
ULl = ULh. The best strategy of Supplier L is charging
pl such that ULl = 0. Thus, solving ULl = ULh = 0 gives

pl4 ¼ ph4 ¼ Vð1� �þ �elÞ; ð13Þ

pl4 ¼ ph4 ¼ 2Vð1� �þ �elÞ � ce2l : ð14Þ
In Case A5, Supplier H will use a price-matching
policy of UHl = UHh. The best strategy of Supplier L
is charging pl such that UHl = 0. Thus, solving
UHl = UHh = 0 gives

pl5 ¼ ph5 ¼ Vhð1� �þ �elÞ; ð15Þ

pl5 ¼ ph5 ¼ Vhð1� �þ �elÞ � ce2l : ð16Þ

PROPOSITION 1. When quality ratings are provided to
manufacturers in the first period, then given eh and el
with eh > el, the equilibrim prices are given as follows.

(a) 1 < h < 3: If el � �el1, equilibrium prices are given
by Equations (1) and (2) [Case A1]. Otherwise,
equilibrium prices are given by Equations (5) and
(6) [Case A2].

Here �el1 ¼ �eh 2h� 3ð Þ � 1� �ð Þ½ �= 2� h� 1ð Þ½ � .
(b) h ≥ 3: If el � �el2, equilibrium prices are given by

Equations (1) and (2) [Case A1]. Otherwise, equi-
librium prices are given by Equations (9) and (10)
[Case A3].

Here �el2 ¼ h�eh � 1� �ð Þ h� 2ð Þ½ �= 2� h� 1ð Þ½ �.
Given eh and el with eh=el, the equilibrim prices are
given as follows.
(c) If h < 2, then equilibrium prices are given by

Equation (13) [Case A4].
(d) If h ≥ 2, then equilibrium prices are given by

Equation (15) [Case A5].

The detailed proofs are provided in the online
appendix. Intuitively, if Supplier L and Supplier H
are sufficiently differentiated, then they should target
different customers. The result of Proposition 3 is con-
sistent with this intuition. When el is sufficiently small
and sufficiently different from eh, then equilibrium is
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Case A1, where Supplier H sells to the high-type man-
ufacturer whereas Supplier L sells to the low-type
manufacturer. However, if Supplier L and Supplier H
are not sufficiently differentiated, they may sell to the
same type of manufacturer. In Case A2, Supplier H
and Supplier L share the market of the low-type man-
ufacturer. In Case A3 they share the market of the
high-type manufacturer. The value of h measures the
high-type manufacturer’s willingness-to-pay for a
unit of supplier effort and 1 is the willingness-to-pay
of the low-type manufacturer. If such willingness-to-
pay of the high-type manufacturer is much higher
than that of the low-type manufacturer (h > 2), then
only the high-type manufacturers is valuable to both
suppliers. Thus, Supplier H and Supplier L only sell
to the high-type manufacturer (Case A3). In contrast,
when h ≤ 2, then Supplier H will sell to both types of
manufacturers. Supplier L only sells to the low-type
manufacturer (Case A2).

PROPOSITION 2. When quality ratings are provided to
manufacturers in the first period, the optimal efforts of
suppliers are as follows.

(a) 1 < h < 2: if c\ ĉ1, then e�h ¼ e�l ¼ 1; if
ĉ1 � c\ ĉ2, then e�h ¼ 1, e�l ¼ V�= 2cð Þ; if c � ĉ2,

then e�h ¼ 3V�þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2V c� c�þ V�2ð Þ

ph i
= 2cð Þ,

e�l ¼ V�= 2cð Þ.
(b) 2 ≤ h < 3: if c\ ĉ3, then e�h ¼ e�l ¼ 1; if

ĉ3 � c\ ĉ2, then e�h ¼ 1, e�l ¼ V�= 2cð Þ; if c� ĉ2,

then e�h ¼ 3V�þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2V c� c�þV�2ð Þ

ph i
= 2cð Þ,

e�l ¼ V�= 2cð Þ.
(c) 3 ≤ h: if c\ ĉ4, then e�h ¼ e�l ¼ 1 ; if c � ĉ4, then

e�h ¼ e�l ¼ Vh�= 2cð Þ.
where ĉ1 ¼ 1

2V 1þ �þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2�

p� �
,

ĉ2 ¼ 1
2V 2þ �þ 2

ffiffiffiffiffiffiffiffiffiffiffi
1þ �

p� �
,

ĉ3 ¼ 1
2V h� 1þ �þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h� 1ð Þ h� 1þ 2�ð Þp� �
,

ĉ4 ¼ Vh�=2.

Given (V,k) = (1,0.3), Figure 3 shows results of
Proposition 2. Note that we assume that both suppli-
ers may use a price-matching technique (Zhang 1995)
to prevent their customers from being poached by the
competitor. We use case A2 as an example to show
the implication of this assumption. In Case A2,
ULh = ULl = 0, Manufacturer L obtains the same net
surplus from Supplier L and Supplier H. Thus, Manu-
facturer L will randomly buy from either Supplier L
or Supplier H. The expected demand for Supplier L is
1/2 in Period 1 and Period 2. If Supplier L does not
use any price matching technique, then Supplier H
may cut its price by ɛ (ɛ > 0, ɛ?0) such that
ULh = ɛ > ULl = 0. Now, Manufacturer L obtains
higher net surplus from Supplier H than from

Supplier L. Thus, Manufacturer L will always buy
from Supplier H. It follows that the expected demand
for Supplier L is zero. That is, Supplier L is competed
out of the market. However, when Supplier L uses a
price-matching policy “ULh = ULl” (pl ≥ 0), Supplier
H is unable to poach Supplier L’s customer by simply
cutting its price a little bit. The reason is that when
Supplier H reduces its price by ɛ, then Supplier L’s
price is automatically reduced by ɛ according to its
price-matching policy ULh = ULl. This means that
Manufacturer L always obtains the same net surplus
from Supplier L and Supplier H. The expected
demand for Supplier L is always 1/2 as long as pl ≥ 0.
Thus, if Supplier H wants to drive Supplier L out of
the market, then Supplier H must charge a price such
that both types of manufacturers would choose Sup-
plier H even though Supplier L charges pl = 0.
Next, we show that Supplier H does not have any

incentive to drive Supplier L out of the market in
equilibrium. If that happened, then Supplier H must
charge a price such that ULh � ULljpl¼0, UHh �
UHljpl¼0. This leads to ph � min Vh� e�h � e�l

� �
;

�
V� e�h � e�l

� �� ¼ V� e�h � e�l
� �

. If Supplier H charges
ph ¼ V� e�h � e�l

� �
, it will obtain a profit of ph ¼

4ph � c e�h
� �2 ¼ 4V� e�h � e�l

� � � c e�h
� �2

. However, it
can be shown that p�h � ph [ 0 always holds (see sec-
tion 7.3 in the online Appendix for a detailed analy-
sis). Therefore, two suppliers share the market in
equilibrium as shown in Proposition 2.
It can also be seen that when 1 < h < 3, the optimal

quality levels of both Supplier L and Supplier H are
not affected by h, the taste parameter of Manufacturer
H. The reason is that when 1 < h < 3, the difference
between two types of manufacturers is so small that
both types of manufacturers are valuable to suppliers.
Manufacturer L is the target customer of both suppli-
ers. Manufacturer H has higher willingness-to-pay for
a unit increase of quality than Manufacturer L. As
long as Manufacturer L can afford buying from Sup-
plier L and Supplier H, Manufacturer H must be able
to afford buying from Supplier L and Supplier H.

Figure 3 Equilibrium Efforts in (c,h) Space When (V,k) = (1,0.3)
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Thus, both suppliers only need to consider the will-
ingness-to-pay of Manufacturer L when they choose
quality levels. Therefore, Manufacturer H’s taste for
quality (h) does not affect the optimal quality levels of
both suppliers. When h ≥ 3, the difference between
the two types of manufacturers is so big that Manu-
facturer H is much more valuable than Manufacturer
L to both suppliers. Then both suppliers give up Man-
ufacturer L and sell to Manufacturer H only. Thus,
Manufacturer H’s taste for quality (h) can affect the
optimal quality levels of both suppliers when the cost
of developing quality is sufficiently large.
Consider the effects of the manufacturer’s propor-

tional loss from a failure of the supplier’s product (k).
Intuitively, both suppliers should enhance their qual-
ity levels when manufacturers face a higher potential
proportional loss. This can be seen from de�l =d� [ 0
and de�h=d� [ 0.

4. Competition with Manufacturer
Assessments

In this section, we examine the case of competition
where professional quality ratings are not provided in
Period 1. Manufacturers must rely on quality infor-
mation provided by vendors—gathered through the
manufacturers’ own assessment. We focus on the
rational expectations equilibrium (Jerath et al. 2010,
Muth 1961), where manufacturers form expectations
on quality levels of suppliers based on available infor-
mation, and the expectations are unbiased. That is,
E elð Þ ¼ e�l and E ehð Þ ¼ e�h.
The quality levels of suppliers remain unknown

to manufacturers in Period 1. There are two possible
equilibrium outcomes in Period 1: (a) a separating
equilibrium where both suppliers truly announce
their types (high-quality or low-quality) and charge
different prices, and (b) a pooling equilibrium where
the low-quality supplier mimics the high-quality
supplier by charging the same price as that charged
by the high-quality supplier. It can be shown that
given el and eh, the low-quality supplier always has
an incentive to mimic the high-quality one in Period
1 (see section 7.5 in the online Appendix for a
detailed analysis). In Period 2, manufacturers know
the quality levels of both suppliers. Thus, it does
not make any sense for Supplier L to mimic Sup-
plier H in Period 2. We further assume that manu-
facturers make rational decisions instead of emotional
decisions. Otherwise, they might never buy from
the low-quality supplier, even though their net sur-
plus of buying from the low-quality supplier is
greater than that of buying from the high-quality
supplier in Period 2.
Thus, both suppliers appear identical to manufac-

turers, and they charge the same introductory price pi.

In Period 1, manufacturers randomly choose a sup-
plier with a probability of 50% for each. We use Utr to
denote the net surplus of a type-t (t = H,L) manufac-
turer who randomly chooses a supplier.

ULr ¼ 1

2
E ULl½ � þ 1

2
E ULh½ �;

UHr ¼ 1

2
E UHl½ � þ 1

2
E UHh½ �;

ð17Þ

where E[ULl] = E(el)(V � pi) + (1 � E(el))[(1 � k)
V � pi], E[ULh] = E(eh)(V�pi)+(1 � E(eh))[(1�k)V�pi],
E[UHl] = E(el)(hV�pi)+(1�E(el))[(1�k)hV�pi], E[UHh] =
E(eh)(hV�pi)+(1�E(eh))[(1�k)hV�pi].
There are two possible scenarios in equilibrium:

(S1) only the high-type manufacturer can afford the
introductory price pi in Period 1, and (S2) both types
of manufacturers can afford pi in Period 1.
In the first scenario (S1), the expected demand of

each supplier is 1
2. The introductory price pi is set to

satisfy UHr = 0, or pi ¼ Vhð1� �Þ þ 1
2�hV½EðelÞþ

EðehÞ�. In Period 2, suppliers charge different prices
(ph and pl) because their quality levels are revealed to
manufacturers via manufacturers’ risk assessments.
The profits of low-quality and high-quality suppliers
can be expressed as: pl ¼ 1

2 pi þ pl � ce2l and ph ¼
1
2 pi þ ph � ce2h.
In the second scenario (S2), the expected demand of

each supplier is 1. The introductory price pi satisfies
ULr = 0, or pi ¼ Vð1� �Þ þ 1

2�V½EðelÞ þ EðehÞ�. In Per-
iod 2, suppliers charge pl and ph, respectively when
their efforts are revealed. The profits can be expressed
as: pl ¼ pi þ pl � ce2l and ph ¼ pi þ ph � ce2h.

PROPOSITION 3. When a quality rating is not provided to
manufacturers in the first period, the optimal efforts of
suppliers are as follows.

(a) 1 < h < 2: if c\ ĉa, then e�h ¼ e�l ¼ 1; if
ĉa � c � ĉb, then e�h ¼ 1, e�l ¼ V�=ð4cÞ; if c[ ĉb,

then e�h ¼ ½3V�þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Vð2c� 2c�þ V�2Þp �=ð4cÞ,

e�l ¼ V�=ð4cÞ.
(b) 2 ≤ h < 3: if c\ ĉc, then e�h ¼ e�l ¼ 1; if

ĉc � c � ĉb, then e�h ¼ 1, e�l ¼ V�=ð4cÞ; if c[ ĉb,

then e�h ¼ ½3V�þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Vð2c� 2c�þ V�2Þp �=ð4cÞ,

e�l ¼ V�=ð4cÞ.
(c) 3 ≤ h: if c � ĉd, then e�h ¼ e�l ¼ 1; if c [ ĉd, then

e�h ¼ e�l ¼ Vh�=ð4cÞ.
where ĉa ¼ 1

4Vð1þ �þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2�

p Þ, ĉb ¼ 1
4Vð2þ �þ

2
ffiffiffiffiffiffiffiffiffiffiffi
1þ �

p Þ, ĉc ¼ 1
4Vðh� 1þ �þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðh� 1Þðh� 1þ 2�Þp Þ,

ĉd ¼ Vh�=4.

In this section, the suppliers appear identical to
manufacturers in Period 1. Thus, the suppliers cannot
segment the market by selling to different types of
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manufacturers. Instead, the suppliers have the same
chance to sell to a specific type of manufacturer. The
proof of Proposition 3 shows that when the high-type
manufacturer has sufficiently high willingness-to-pay
for the service (h sufficiently large, h ≥ 2), the target
manufacturer is the high-type manufacturer only in
Period 1. Otherwise, target manufacturers are both
types in Period 1.

5. Comparison: Professional Quality
Ratings vs. Manufacturer
Assessments

We use Case R to denote the case where professional
quality ratings are provided in Period 1, and Case NR
to denote the case where professional quality ratings
are not provided in Period 1 (i.e., manufacturers need
to perform risk assessments by themselves).
Free-riding arises in Case NR because the low-qual-

ity supplier may mimic a high-quality supplier, and
then confuse manufacturers. Intuitively, the free-
riding problem should reduce the high-quality
supplier’s incentive to invest in quality. But, it is not
obvious how the low-quality supplier’s quality effort
is affected. There are two conflicting effects. First,
the low-quality supplier appears identical to the
high-quality supplier in Period 1, so it could have
incentives to enhance its quality level to increase the
willingness-to-pay of manufacturers. Second, the
low-quality supplier still needs to maintain an appro-
priate differentiation with the high-quality supplier in
Period 2 to avoid intense price competition after
quality levels are known to manufacturers. Since free-
riding reduces the high-quality supplier’s effort on
quality, the low-quality supplier could also reduce its
effort to keep an appropriate differentiation with the
high-quality supplier.

PROPOSITION 4. When a professional quality rating is not
available, free-riding reduces the quality efforts of both the
high-quality supplier and the low-quality supplier. That
is, ðe�hj Case RÞ � ðe�hj Case NRÞ and ðe�l jCase RÞ�
ðe�l jCase NRÞ.

Proposition 4 shows that although it is possible for
the low-quality supplier to enhance its quality level to
gain higher revenue in Period 1, the effect of free-
riding still dominates Supplier L’s desire of gaining
higher revenue in Period 1.

PROPOSITION 5. The impacts of the quality rating on the
profits of both suppliers are as follows.

(a) 1 < h < 2: The quality rating benefits Supplier L
when c is moderate. It also benefits Supplier H
when c is moderate. The mathematical expressions

of the above results are as follows. There exists a
cr 2 ðĉ1; ĉ2Þ such that when c 2 ½̂c1; crÞ, the qual-
ity rating benefits Supplier H (ðp�hj Case RÞ [
ðp�hjCase NRÞ). When c 2 ½̂ca; ĉ1Þ [ ðcr;þ1Þ, the
quality rating hurts Supplier H (ðp�hjCase RÞ\
ðp�hjCase NRÞ). When c 2 ð0; ĉaÞ [ fcrg , the qual-
ity rating does not afffect Supplier H’s profit
(ðp�hjCase RÞ ¼ ðp�hjCase NRÞ). There exists a
cs 2 ðĉa; ĉbÞ such that when c 2 ½̂ca; csÞ, the qual-
ity rating benefits Supplier L (ðp�l jCase RÞ [
ðp�l jCase NRÞ). When c 2 (cs,+∞), the quality
rating hurts Supplier L. When c 2 ð0; ĉaÞ [ fcsg,
quality rating does not affect Supplier L’s profit.

(b) 2 ≤ h < 3: The quality rating benefits Supplier L
when c is moderate. It can benefit Supplier H
when c is moderate. See the proof for mathematical
expressions of the above results.

(c) 3 ≤ h: The quality rating always benefits both Sup-
plier L and Supplier H.

It might seem intuitive that the quality rating
always helps the high-quality supplier but hurts the
low-quality supplier. Proposition 5 shows that this is
not always the case. The reason is that ratings generate
two effects on competition: (1) It eliminates the free-
riding problem. This effect helps the two suppliers to
develop higher quality products for manufacturers.
Then manufacturers have higher willingness-to-pay
for the products. Both suppliers are able to charge
higher prices. Thus, the quality rating can benefit both
suppliers. (2) It can intensify the competition in Per-
iod 1. In Case NR, when 2 ≤ h < 3, both suppliers sell
to Manufacturer H only. The high-quality supplier
can extract all the surplus from the high-type manu-
facturer while the low-quality supplier can charge a
high price by free-riding on the high-quality supplier.
However, these benefits for both suppliers are gone
when the rating is provided because both suppliers
need to compete for the demand of Manufacturer L in
both periods when ĉ3 � c. Thus, the rating (which can
intensify the competition) may hurt both suppliers.

PROPOSITION 6. The quality rating does not affect the low-
type manufacturer, whose net surplus is always zero. It
hurts the high-type manufacturer when 2 ≤ h < 3 and

ĉc � c\ ĉ3, where ĉc¼1
4Vðh�1þ�þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðh�1Þðh�1þ2�Þp Þ,

ĉ3¼1
2Vðh�1þ�þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðh�1Þðh�1þ2�Þp Þ. In other regions

of (c,h), the quality rating benefits the high-type
manufacturer.

This result is different from Shapiro (1986), which
showed that improved information always helps the
high-type manufacturer. The reason is that Shapiro
(1986) assumed that the market is fully competitive
with no profit for the sellers while we do not make
such an assumption. Footnote 10 of Shapiro (1986)
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suggested that modeling heterogeneous sellers would
permit the analysis of issues not modeled in that
study. The sellers in our study are ex-post heteroge-
neous.
Intuitively, quality rating helps the high-type

manufacturer to choose the high-quality supplier,
and thus benefits the high-type manufacturer.
Hence, it seems quite counterintuitive that the rat-
ing can hurt the high-type manufacturer. The rea-
sons for such a counter intuitive result are as
follows. Although the quality rating encourages
suppliers to enhance their quality, it also allows
high-quality suppliers to charge high prices. The
high-type consumer benefits from obtaining high-
quality products. However, such benefit can be off-
set by the high price. Therefore, the quality rating
can hurt the high-type manufacturer. When
2 ≤ h < 3 and c\ ĉ3, both suppliers exert their best
efforts on product quality (el = eh = 1) if the quality
rating is provided. However, both suppliers also
charge the highest price for the high-type manufac-
turer, leaving that manufacturer’s net surplus to be
zero. If the quality rating is not provided, and
when 2 ≤ h < 3 and ĉc � c\ ĉ3, Supplier L will not
choose el = 1. Instead, it will choose el < 1 to free
ride on Supplier H. And Supplier L will charge a
low price to sell to the low-type manufacturer in
Period 2. Then Supplier H will have to charge a
lower price than that when the quality rating is
provided. It follows that the high-type manufac-
turer will obtain a positive net surplus instead of
zero in h 2 [2,3) and c 2 ½̂cc; ĉ3Þ .
Proposition 5 and Proposition 6 have important

managerial implications for the business model of
the quality risk rating industry. In some cases cur-
rently available, the rating agencies charge suppliers
to conduct the assessment and also charge manufac-
turers interested in obtaining the providers’ ratings
(the ratings are not publicly available, but rather are
provided for a fee). Our results suggest that this is
not a good business model under certain conditions
(e.g., when both suppliers are hurt by the quality rat-
ings). Quality ratings have a substantial effect on
competition, the suppliers, and manufacturers. Qual-
ity rating agencies must understand these effects to
assess the manufacturers and suppliers willingness
to pay for the rating service.
Next we examine the effect of quality ratings on

social welfare. We define the social welfare as a
sum of consumer surplus and producer surplus.
That is, the social planner does not have any special
preference for either consumer surplus or producer
surplus.

PROPOSITION 7. The impacts of the quality rating on the
social welfare are as follows.

(a1) 1 < h < 2 and �[ 3þ2hð Þ
2 1þhð Þ2: There exist a cr 2

ðĉ1; ĉ2Þ such that when c 2 ½̂ca; 14V�ð3þ 2hÞÞ[
½̂c1; crÞ, the quality rating increases social welfare.
When c 2 ½14V�ð3þ 2hÞ; ĉ1Þ [ ðcr;þ1Þ; the

quality rating reduces social welfare. When
c 2 ð0; ĉaÞ [ fcrg [ f14V�ð3þ 2hÞg, the quality

rating does not affect social welfare.
(a2) 1 < h < 2 and � � 3þ2hð Þ

2 1þhð Þ2: There exist a
cr 2 ðĉ1; ĉ2Þ such that when c 2 ½̂c1; crÞ, the
quality rating increases social welfare. When
c 2 ½̂ca; ĉ1Þ [ ðcr;þ1Þ; the quality rating reduces
social welfare. When c 2 ð0; ĉaÞ [ fcrg, the qual-
ity rating does not affect social welfare.

(b) 2 ≤ h < 3: When c 2 ½̂c3;þ1Þ, the quality rating
increases social welfare. When c 2 ½̂cc; ĉ3Þ, the qual-
ity rating reduces social welfare. When c 2 ð0; ĉcÞ,
the quality rating does not affect social welfare.

(c) 3 ≤ h: When c 2 ðĉd;þ1Þ, the quality rating
increases social welfare. When c 2 ð0; ĉd�, the
quality rating does not affect social welfare.

Surprisingly, the quality rating does not always
increase social welfare. The reason is that the quality
rating encourages suppliers to improve their product
quality. Under certain conditions, suppliers may
make too much investment on product quality and
the investment may not be socially optimal.
Quality risk rating is a relatively new service com-

pared to credit rating. In 1931, credit ratings were first
endorsed by the US Office of the Comptroller of the
Currency (OCC), which required banks to use current
market prices for all bonds on their balance sheet
rated below “investment grade”. In 1936, the OCC
went further and restricted banks from buying bonds
below “investment grade”. In comparison, quality
risk ratings are not officially endorsed by the US gov-
ernment. Proposition 5 suggests that social planners
should be prudent to encourage adoption of quality
risk rating through public policy initiatives because the
quality rating does not always increase social welfare.

6. Conclusion

There is growing interest in many industries for ven-
dor quality ratings that enable enterprise manufactur-
ers to obtain risk assessments of their suppliers
expeditiously. We investigate the impact of such qual-
ity rating services on manufacturers, suppliers and
social welfare.
Intuitively, some may conclude that quality risk rat-

ings should benefit the high-quality suppliers and
hurt the low-quality ones. However, we find that this
is not always the case—quality ratings can hurt both
high-quality and low-quality suppliers. This occurs
when the absence of a quality rating softens competi-
tion allowing the low-quality supplier to appear
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identical to the high-quality supplier. In that case, the
low-quality supplier is able to charge a higher price
than otherwise and the high-quality supplier is able
to avoid providing a positive net surplus to the high-
type manufacturer to ensure that the manufacturer
does not choose the low-quality supplier. Therefore, it
is possible that the quality rating can intensify compe-
tition and hurt both suppliers. On the other hand, in
some cases quality ratings can benefit both suppliers.
For example, in cases where the high-type manufac-
turer’s willingness-to-pay for a unit increase of the
quality is high, it is useful for both suppliers to
develop high-quality products and then charge high
prices for the high-type manufacturer. Since ratings
encourage both suppliers to provide high-quality
products by eliminating the free-riding problem, both
suppliers can benefit from ratings.
Prior literature showed that improved information

always benefits the high-type manufacturer (Shapiro
1986). Our model shows that quality ratings can hurt
the high-type manufacturer. This is because our
model captures competition between heterogeneous
providers while Shapiro (1986) assumed homoge-
neous providers where profit is competed away.
Hence, the improved information did not affect the
competition in Shapiro’s model. We consider a
duopolist competition, where both suppliers can earn
a positive profit. We find that quality ratings have
subtle effects on the competition. When the rating is
provided, it may encourage suppliers to provide
high-quality products. However, the rating also
enables suppliers to charge high prices on manufac-
turers. It reduces the net surplus obtained by the
high-type manufacturer. Thus, the high-type manu-
facturer can be hurt by a quality rating.
The quality rating also has subtle effects on social

welfare. We find that it does not always increase
social welfare. The policy implication is that social
planners should make sure that the quality rating
does not reduce social welfare before they encourage
the quality risk rating. Still, the above results must be
interpreted within the assumptions and limitations of
our analytical model. We hope future research will
relax some of these assumptions and extend the
model. For example, future work might consider
component procurement strategies in an assemble-to-
order system with quality risk associated with
component suppliers (for component procurement
strategies, see Fang et al. 2008). We hope that the ini-
tial results presented in this study will motivate more
research in this important area.
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Note

1To simplify the analysis and focus on the informational
effects of quality risk ratings, we assume that a manufac-
turer sources a single product (or batch of products) from
its supplier in each period. A more general assumption is
letting the quantity be endogeneously determined. How-
ever, such assumption makes the model complicated and
less tractable without adding significant business insight.
It is likely possible to obtain results similar to those in this
study in a more complicated model.
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7 Online Appendix

7.1 Proof of Proposition 1

Proof. In Case A1, Case A2, and Case A4, given Supplier H’s price matching policy, Supplier L

cannot poach Supplier H’s customer (or increase its demand) via simply cutting its price. Thus,

the price equilibrium defined by Case A1, Case A2 or Case A4 is stable as long as Supplier H uses

the price matching policy described in these cases.

However, Case A3 and Case A5 are not always stable because Supplier L has another choice:

selling to the low-type manufacturer. In Case A3, Supplier L may sell to the low-type manufacturer

instead of the high-type manufacturer by charging a lower price 1 (note that 1  3). Then

Supplier L obtains 1 instead of 3. Thus, Case A3 is sustainable only when 3  1. Following

a similar logic, Case A5 is sustainable only when 5  4.

1 − 3 =  (2− ) (1− + ), 4− 5 =  (2− ) (1− + ). This suggests that Case

A3 and Case A5 are not sustainable in   2 because even though Supplier H chooses the pricing

strategy of Case A3 (or Case A5), Supplier L always has an incentive to deviate to Case A1 (or

Case A4). Thus, when  = , the equilibrium is Case A4 in   2, or Case A5 in  ≥ 2.

When    and   2, we only need to compare Case A1 with Case A2. Since Supplier L does

not deviate, we only need to compare 2 with 1. 1−2 =  [(2 − 3) − 2 ( − 1) − (1− )].

Thus, when   2 and  ≤ [ (2 − 3)− (1− )]  [2 ( − 1)], the equilibrium is Case A1. Oth-

erwise, the equilibrium is Case A2.

Now, consider    and  ≥ 2. 3 − 2 =  ( − 3) (1− + ). Thus, Case A2 is

not equlibrium in  ≥ 3; Case A3 is not equilibrium in 2 ≤   3. When 2 ≤   3, we only

need to compare 2 with 1. 1 − 2 =  [(2 − 3) − 2 ( − 1) − (1− )]. Thus, when

2 ≤   3 and  ≤ [ (2 − 3)− (1− )]  [2 ( − 1)], the equilibrium is Case A1. Otherwise,

the equilibrium is Case A2. When  ≥ 3, we only need to compare 3 with 1. 1 − 3 =

 [ − ( − 2) (1− )− 2 ( − 1)]. Thus, when  ≥ 3 and  ≤ [ − (1− ) ( − 2)]  [2 ( − 1)],

the equilibrium is Case A1. Otherwise, the equilibrium is Case A3.
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7.2 Proof of Proposition 2

Proof. We claim that Case A1 is impossible when 1    3 is satisfied. According to part

(a) of Proposition 1, the inequality  ≤ ̄1(= [ (2 − 3)− (1− )]  [2 ( − 1)]) should be sat-

isfied in Case A1. However, when 1   ≤ 32, then ̄1  0 is always satisfied. Note that

0 ≤  ≤ 1 always holds, the inequality  ≤ ̄1 cannot be satisfied in 1   ≤ 32. Next we

consider the scenario 32    3, where ̄1 is an increasing function of . It follows that

̄1 ≤ ̄1|=1 = 1 − ( − 2)  [2 ( − 1)]. Further, ̄1|=1 is an increasing function of  because

 (̄1|=1)  = 1
h
2 ( − 1)2

i
 0. We have ̄1 ≤ ̄1|=1  ̄1|=1=3 = 1 − 1

4
 0. The

last inequality holds because 0   ≤ 12. Again, since 0 ≤  ≤ 1 always holds, the inequality

 ≤ ̄1 cannot hold in 32    3. This means that the inequality  ≤ ̄1, which is the necessary

condition for Case A1, does not hold in 1    3. Therefore, Case A1 is impossible in 1    3.

Now, we prove part (a) of Proposition 2. We show that both suppliers have no incentive to

deviate from ∗ = ∗ = 1 when   ̂1 is satisfied, where ̂1 =
1
2

¡
1 + +

√
1 + 2

¢
. When

1    2 and ∗ = ∗ = 1, both suppliers sell to both types of manufacturers (Case A4, see part

(c) of Proposition 1). Inserting ∗ = ∗ = 1 in eq.(14), we get the profits of both suppliers:

∗ = ∗ = 2 − 

Suppose that Supplier L deviate from ∗ = 1 to 0  1, then the competition turns to be Case

A2. The reason is that given ∗  0, there are only two possible cases in 1    2: Case A1

and Case A2 (see part (a) of Proposition 1). And we have shown that Case A1 is impossible in

1    3. Then according to eq.(5) and eq.(7), we have 0 = 2 =  (1− + ) − 2 . We

want to show that max0

00


1 

0
  2 −. Solving the F.O.C. (first-order condition) 00 = 0,

we get 0∗ =   (2). There are two possibilities: (1)  2   ≤ ̂1. In this case, 0  0∗  1

holds. We have 0∗ = 0|0= (2). Solving 0∗ − ∗ = 0, we obtain  = ̂1. We note that

 (0∗ − ∗ )  = 1− [  (2)]2  0 in    2. Thus, 0∗ ≤ ∗ always holds with the equality
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holding at  = ̂1. (2)  ≤  2. In this case, 0∗ ≥ 1 holds. However, we have assumed that

Supplier L deviate from ∗ = 1 to 0  1. Thus, 0∗ = 0|0=1− (0→0) =  −   2 − .

Therefore, when 1    2 and  ≤ ̂1, both suppliers have no incentive to deviate from ∗ = 1 to

  1 ( =  ).

Next, we show that when 1    2 and ̂1 ≤  ≤ ̂2, suppliers do not deviate from ∗ = 1 and

∗ =   (2). This equilibrium outcome is Case A2 because Case A1 is impossible in 1    3

And  = , the necessary condition for Case A4, is not satisfied. Inserting optimal efforts in eq.(7)

and eq.(8), we get the profits of both suppliers:

∗ =  (1− ) +  22 (4) 

∗ = 3 − 

Consider the follower Supplier L. Given ∗ = 1, if Supplier L chooses 
0
  1, then its profit is given

by eq.(7). Solving the first order condition, we get 0∗ =   (2). The condition ̂1 ≤  ensures

that 0∗ ≤ 1 holds. Thus, if Supplier L chooses 0  1, its best choice is 0∗ =   (2), which

is exactly the equilibrium quality given by Proposition 2. If Supplier L chooses 0 = 1, then its

profit is given by eq.(14): 0 = 2 − . However, the inequality ∗ ≥ 0 always holds in ̂1 ≤ .

Therefore, Supplier L does not have any incentive to deviate from ∗ =   (2). Now, consider

the leader Supplier H. Its profit is higher than that of Supplier L in ̂1 ≤  ≤ ̂2 because solving

∗ = ∗ gives  = ̂2 and  (∗ − ∗ )  = [  (2)]2 − 1  0 in  2  ̂1 ≤ . If Supplier

H deviate from ∗ = 1 to a quality level strictly less than 1 (
0
  1), then 

0
  ∗ should hold.

However, given 
0
  ∗  ∗ and 0  1, we claim that Supplier L has an incentive to deviate

from ∗ to 
0
 +  (  0,  → 0) and become a higher-quality supplier. This is because the profit

of the higher-quality supplier in Case A2 is

 = 3 (1− + )− 2.
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And Supplier L will be able to get |=0+ = 
0
  ∗ . However, if the follower Supplier L

chooses to be a higher-quality supplier, then the leader Supplier H cannot obtain a profit higher

than ∗ =  (1− ) +  22 (4). This is because the profit of the lower-quality supplier in Case

A2 is

 =  (1− + )− 2 ,

which reaches its maximum ∗ at 
∗
 =   (2). Therefore, Supplier H also has no incentive to

deviate from ∗ = 1 to 
0
  1.

Next, we show that when 1    2 and ̂2  , suppliers do not deviate from ∗ =h
3 + 2

q
2
¡
− +  2

¢i
 (2) and ∗ =   (2). Inserting ∗ and ∗ in eq.(7) and eq.(8),

we find that Supplier H obtains the same profit as that of Supplier L.

∗ = ∗ =  (1− ) +  22 (4) .

It can be verified that ∗  1 in ̂2   because ∗ = 1 at  = ̂2 and ∗  0. Consider the

follower Supplier L. As shown above, if it chooses to be a lower-quality supplier, then its best choice

is choosing ∗ =   (2). If it chooses a quality strictly higher than ∗, then it will get a profit

strictly lower than ∗ . This is because the profit of the higher-quality supplier (see eq.(8)) is a

decreasing function of  in   3  (2). And ∗  3  (2) is satisfied. If Supplier L chooses

a quality level the same as ∗, then it still gets a profit strictly lower than ∗ . The reason is that

given  = ∗, the profit of Supplier L is given by eq.(14) (see Part(c) of Proposition 1). Inserting

 = ∗ and  = ∗ in eq.(14), we find that

 = −
 

h
5 + 4

√
2

q

¡
− +  2

¢i
42

 0

Therefore, Supplier L has no incentive to deviate. Now consider Supplier H. If it is able to obtain

a profit higher than ∗ by choosing 0  1, then following the same argument as shown in the

past paragraph, the follower Supplier L has an incentive to choose 0 + . Then the maximum
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profit for Supplier H cannot exceed ∗. If Supplier H chooses 
0
 = 1, then Supplier L will choose

∗ =   (2). Since 1  ∗  3  (2), Supplier H will obtain a profit strictly lower than ∗.

Therefore, Supplier H also has no incentive to deviate.

Following a similar proof as above, we may prove part (b) of Proposition 2. Next, we prove

part (c) of Proposition 2. Firstly, we show that both suppliers have no incentive to deviate from

∗ = ∗ = 1 when   ̂4 is satisfied, where ̂4 =  2. When 3 ≤  and ∗ = ∗ = 1, both

suppliers sell to the high-type manufacturer (Case A5, see part (c) of Proposition 1). Inserting

∗ = ∗ = 1 in eq.(16), we get the profits of both suppliers:

∗ = ∗ =  − 

Suppose that Supplier L deviates from ∗ = 1 to 
0
  1, then there are two possibilities: 

0
  ̄2|=1

and 0 ≤ ̄2|=1 (see Proposition 1). If 0  ̄2|=1 holds, then Supplier L’s profit is expressed

as eq.(11). Clearly Supplier L’s profit given by eq.(11) is an increasing function in  ∼ [0 1] as

long as   ̂4 is satisfied. Thus, Supplier L’s optimal quality level is 1, not 
0
  1. Now, consider

the case where 0 ≤ ̄2|=1 holds and Supplier L’s profit is expressed as eq.(3). Clearly 0 is an

increasing function in  ∼ [0 1] as long as  ≤   is satisfied. Thus, when  ≤  , Supplier L’s

optimal quality level is 1, not 0  1. Now, consider the case where      ̂4, then Supplier L’s

optimal quality level is 0 =  . And its profit is 0 = 2 (1− ) + ( )2 .

∗ − 0 =
£−2 +  ( − 2 + 2)−  22

¤
 = 1

where 1 = −2 +  ( − 2 + 2) −  22. Clearly 1 is a concave quadratic function of . And

we have

1|=  =  2 ( − 2)  0

1|= 2 =
1

4
 2 ( − 2) [2+  (2− )]  0

This means that ∗ − 0  0 always holds in      ̂4. Therefore, both suppliers do not have
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any incentive to deviate.

Secondly, we show that both suppliers have no incentive to deviate from ∗ = ∗ =   (2)

when  ≥ ̂4 is satisfied. In this case,

∗ = ∗ =   (1− ) + ( )2  (4) .

Suppose that Supplier L deviates from ∗ to 0  ∗ . When 0  ̄2|=∗ holds, then Supplier

L’s profit is expressed as eq.(11). Solving the first order condition 0 = 0, we find that the

optimal quality level for Supplier L is exactly ∗ , not 
0
. When 0 ≤ ̄2|=∗ holds, then Supplier

L’s profit is expressed as eq.(3). Supplier L’s optimal quality level is 0 =  . And its profit is

0 = 2 (1− ) + ( )2 .

∗ − 0 =  ( − 2) £4 (1− ) +  2 ( + 2)
¤
 (4)  0

Thus, Supplier L has no incentive to deviate from ∗ to 
0
  ∗ . Suppose that Supplier L deviates

from ∗ to 
0
  ∗ (= ∗), then Supplier L is a higher-quality supplier while Supplier H is a lower-

quality supplier with  = ∗ and  = 0. The competiton can be either Case A3 (when ∗ 

̄2|=0 holds) or Case A1 (when ∗ ≤ ̄2|=0 holds). It is straightforward to verify that Supplier

L’s optimal quality level in Case A3 is ∗ , not 
0
  ∗ . If the competition turns out to be Case

A1, then Supplier L’s profit can be expressed as 0 = 2  (
0
 − ∗) + 2 (1− + ∗) −  (0)

2
.

Solving the first order condition for Supplier L, we find that the optimal quality level is 0 =  

(when    ) or 0 = 1 (when  2   ≤  ). It is straightforward to verify that

∗ −
³
0|0=1

´
 ∗ −

³
0|0= 

´

because 0|0=  is the global optimum. We only need to show that ∗ −
³
0|0= 

´
 0.

∗ −
³
0|0= 

´
= 2 (4) 
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where 2 = 4 (1− ) ( − 2) +  2 ( − 4). It can be shown that 2 is an increasing function of

 because 2 = 4 (1− ) + 2 2 ( − 2)  0. Since   3,   ̂4 =  2  3 2 and 0 

  12, we have 2  2|=3 = 4 (1− )−3 2  4 (1− )−3 2|=3 2 = 3  (2− 3)  0.

Therefore, Supplier L has no incentive to deviate from ∗ to 
0
  ∗ (= ∗).

7.3 Supplier H Will Not Drive Supplier L Out of the Market

Proof. Given any  and  with  ≥ , we want to show that driving Supplier L out of the

market is not the best choice for Supplier H. If H drives L out of the market, then it obtains 
0
 =

4  ( − )−  ()
2 in two periods. However, if Supplier H chooses the same pricing strategy as

that used in Case A2, then it can obtain a profit higher than 
0
. This is because Supplier H obtains

2 = 3 (1− + )− 2 in Case A2 (see eq.(8)). And 2−
0
 =  [3 (1− )−  + 4] 

 [3 (1− )− + 4] =  [3− 4+ 4]  0 (note that  ∈ (0 12)). Therefore, it is not the

best choice for Supplier H to drive Supplier L out of the market.

7.4 Proof of Proposition 3

Proof. We have assume that manufacturers are rational and that their expectations on quality

levels of suppliers are unbiased. It means that (1) Given  () and  (), manufacturer expecta-

tions on quality levels of Supplier H and Supplier L, Supplier L and Supplier H choose ∗ and ∗;

(2) The manufacturer expectations are unbiased in equilibrium (  () = ∗ ,  () = ∗). We use

backward induction to derive ∗ and ∗.

In Period 2, manufacturers know  and , and are able to figure out which supplier is Supplier

H (or Supplier L). Thus, the optimal prices are the same as those given by Proposition 1. In Period

1, suppliers may sell to Manufacturer H only (the first scenario S1), or sell to both Manufacturer

H and Manufacturer L (the second scenario S2). In the first scenario (S1), we have

1 =   (1− ) +
1

2
 [ () + ()]  (18)
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In the second scenario (S2), we have

2 =  (1− ) +
1

2
 [ () + ()]  (19)

The revenue obtained by each supplier in Period 1 is 1
2
1 in S1, or 2 in S2.

1

2
1 − 2 =

1

4
 ( − 2) [2 (1− ) +  ( () + ())] .

Clearly, when  ≥ 2, both supplires will sell to Manufacturer H only in Period 1. Otherwise, they

will sell to both Manufacturer H and Manufacturer L.

Consider the optimal efforts of both suppliers. The proof of this proposition is similar to that of

Proposition 2. We show the proof for the third result of part (a) and omit other simpler proof. The

third result of part (a) is: if 1    2 and   ̂, then 
∗
 =

h
3 + 2

q
2
¡
2− 2+  2

¢i
 (4)

and ∗ =   (4), where ̂ =
1
4

¡
2 + + 2

√
1 + 

¢
. In this case, it is staightforward to show

that ∗ = ∗.

Now, we show that the follower Supplier L does not have any incentive to deviate ∗ . Since

1    2, Supplier L obtains 2 in Period 1. In Period 2, the optimal price of Supplier L is

given by Proposition 1 because  and  have been revealed to manufacturers. In the proof of

Proposition 2, we have shown that Case A1 is impossible when 1    3 is satisfied. Thus, if

Supplier L chooses an effort level strictly less than ∗ (  ∗), then the competition in Period 2

is described by Case A2 (see Proposition 1). The revenue of Supplier L in Period 2 is 22, where

2 is given by eq.(5). Then we obtain the net profit of Supplier L as follows.

 = 2 + 22− 2 

Solving the first order condition, we get ∗ =   (4). Inserting  () = ∗ and  () = ∗ in
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∗ = 2 + 22−  (∗ )
2, we get

∗ =


16

∙
8 (1 + ) (1− ) + 2 (1 + 4) + 2

√
2

q

¡
2− 2+  2

¢¸
(20)

This means that if Supplier L chooses a quality level strictly less than ∗, then it should choose 
∗
 .

Next, we show that Supplier L has no incentive to deviate from ∗ to 
0
 ≥ ∗. If Supplier L chooses

0 = ∗, then the competition is described by Case A4 (see Proposition 1), and 
0
 = 2 +4− (∗)2,

where 4 =  (1− + ∗) (see eq.(13)). Inserting 
∗
 obtained from eq.(20) in ∗ − 0, we get

∗ − 0 =


8

∙
4 (1− ) + 3 2 + 2

√
2

q

¡
2− 2+  2

¢¸
 0

Thus, Supplier L does not have any incentive to deviate from ∗ to 0 = ∗. Now, we examine

if Supplier L has any incentive to deviate from ∗ to 0  ∗. If it happens, then Supplier L

becomes a higher-quality supplier. It will obtain 0 = 2 + 3
2
02 −  (0)

2
, where 02 = 2|=0 =

 (1− + 0). We find that 
0
 is a concave quandratic function of 

0
 with 0

0
  0 in 0 

3  (4). However, ∗  3  (4) because

∗ − 3  (4) =
1√
2

q

¡
2− 2+  2

¢
 0.

Thus, 0  ∗ = ∗ , Supplier L has no incentive to choose 
0
  ∗.

Now, consider the leader Supplier H. If it is able to obtain a profit 0 strictly higher than ∗

by choosing an effort level strictly less than 1 (0  1), then the follower Supplier L will choose

to be a higher-quality supplier by choosing 0 +  (  0,  → 0) instead of ∗ . This is because

Supplier L will be able to obtain 0 instead of 
∗
 with 0  ∗ = ∗ . As shown above, given the

fact that Supplier L becomes a higher-quality supplier, Supplier H cannot obatin a profit strictly

higher than ∗ . Thus, 
0
  ∗ with 0  1 is impossible. If Supplier H deviates to 

0
 = 1 instead,
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then the best choice for Supplier L is still ∗ . We have

∗ − 0|0=1=∗ =
1

16

¡
162 − 16 − 8 +  22

¢


Note that 162 − 16 − 8  +  22  0 in   ̂, we may conclude that Supplier H has no

incentive to deviate from ∗ to 
0
 = 1.

The proof for other results of this proposition are similar to those shown in the proof of Propo-

sition 2. Also they are simpler than the proof for the third result of part (a) of this proposition.

We omit them by leaving them to readers.

7.5 Supplier L Will Mimic Supplier H in Period 1 When Risk Ratings are Not

Provided

Proof. We use Case R to denote the case where professional quality ratings are provided in Period

1, and Case NR to denote the case where professional quality ratings are not provided in Period 1.

(1)   2. If Supplier L mimic Supplier H, then its revenue in Period 1 is 2 (see Proof of

Proposition 3). If Supplier L does not mimic Supplier H, then its highest possible revenue in Perio1

1 is  (1− + ) (see Proposition 1 and its proof). Note that  () =  and  () =  in

equilibrium, we have

2 −  (1− + ) =
1

2
  ( − ) ≥ 0.

(2)  ≥ 2. If Supplier L mimic Supplier H, then its revenue in Period 1 is 1
2
1 (see Proof of

Proposition 3). If Supplier L does not mimic Supplier H, then its highest possible revenue in Perio1

1 is 1
2
  (1− + ) (see Proposition 1 and its proof). We have

1

2
1 −

1

2
  (1− + ) =

1

2
  (1− + )  0.

Therefore, Supplier L always has an incentive to mimic Supplier H in Period 1.
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7.6 Proof of Proposition 4

Proof. We use the results of Proposition 2 and Proposition 3.

(a) When 1    2: We have ̂  ̂  ̂1  ̂2 because

̂1 − ̂ =


4
5 () 

where 5 () =
¡
− 2√1 + + 2

√
1 + 2

¢
is an increasing function of  in  ∈ (0 12) and

5 () = 0 at  = 0. Clearly, when 0   ≤ ̂2, we have (
∗
|Case R)= 1 ≥(∗|Case NR). When

  ̂2,

(∗|Case R)− (∗|Case NR) =
3 − 2√26

4


where 6 =

q

£
2 (1− ) +  2

¤ − 2q
¡
− +  2

¢
, which is a decreasing function of 

because

6 =
 (1− )√



⎛⎝ 1q
2 (1− ) +  2

− 1q
 (1− ) +  2

⎞⎠  0.

Thus, we have

(∗|Case R)− (∗|Case NR) 
3 − 2√26

4
|=̂2 ≥ 0

The last inequality holds because 3  − 2√26|=̂2 =  7 (), where 7 () is a function of 

and it can be verified that 7 () ≥ 0 always holds in  ∈ (0 12). Now, consider the effort level

of Supplier L. When 0   ≤ ̂1, we have (
∗
 |Case R)= 1 ≥(∗ |Case NR). When   ̂1, we have

(∗ |Case R)−(∗ |Case NR)=  (4)  0.

(b) When 2 ≤   3: We want to show that ̂  ̂  ̂3  ̂2.

̂3 − ̂ =


4
8 ( ) 

where 8 ( ) = 2−4+−2√1 + +2
p
( − 1) ( − 1 + 2). 8 ( ) is an increasing function

of  because

8 ( )  = 2 +
2 ( − 1 + )p

( − 1) ( − 1 + 2)  0.
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Thus, 8 ( )  8 ( ) |=2 =
¡
− 2√1 + + 2

√
1 + 2

¢
= 5 (). As shown above, 5 () ≥

0. Therefore, we have ̂3 − ̂  0. It is straightforward to show that ̂  ̂ and ̂3  ̂2. Thus,

it follows that ̂  ̂  ̂3  ̂2. Using a similar proof as shown in part (a), we may show that

(∗|Case R) ≥ (∗|Case NR) and (∗ |Case R) ≥ (∗ |Case NR).

(c) When  ≥ 3. It is straightforward to find that (∗|Case R) ≥ (∗|Case NR) and (∗ |Case R) ≥

(∗ |Case NR).

7.7 Proof of Proposition 5

Proof. (a) 1    2: We have ̂  ̂  ̂1  ̂2 (see the proof of Proposition 4). When   ̂,

(∗|Case R) = (∗|Case NR) = 2 − .

When ̂ ≤  ≤ ̂, (
∗
|Case R) = 2 − , (∗|Case NR) = 1

2
 (5− ) + 1

8
 22 − .

(∗|Case NR)− (∗|Case R) =


8

£
4 (1− ) +  2

¤
 0.

When ̂    ̂1, (
∗
|Case R) = 2 −, (∗|Case NR) = 9 (16), where 9 = 24 (1− )+

9 2+4
√
2

q

£
2 (1− ) +  2

¤
 0. Thus, (∗|Case NR)  (∗|Case R) = 9 [16 (2 − )].

We want to show that 9  16 (2 − ), then (∗|Case NR)  (∗|Case R). It can be verified

that 9 and −16 (2 − ) are increasing functions of  in  ∈ (̂ ̂1]. Thus, 9 −16 (2 − ) ≥

9 − 16 (2 − ) |=̂  0. The last inequality holds because 9 − 16 (2 − ) |=̂ can be

written as  ·10 (), where 10 () is a function of . And it is easy to verify that 10 ()  0 in

 ∈ (0 12)

When ̂1 ≤  ≤ ̂2, (
∗
|Case R) = 3−, (∗|Case NR) = 9 (16), and (

∗
|Case NR)  (∗|Case R) =

9 [16 (3 − )]. We want to show that 9 − [16 (3 − )] is an increasing function of . We

find that  {9 − [16 (3 − )]}   16 + 16 (− 3 ) + 24 (1− )  16 + 16 (− 3 ) +

24 (1− ) |=̂1  0. Thus, 9 − [16 (3 − )] is an increasing function of . Further, it is

easy to show that 9 − [16 (3 − )] |=̂1  0 and 9 − [16 (3 − )] |=̂2  0. Thus, there

exists a  ∈ (̂1 ̂2) such that when  ∈ [̂1 ), (∗|Case R)  (∗|Case NR); when  ∈ [,̂2),

(∗|Case R) ≤ (∗|Case NR).
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When ̂2  , (∗|Case R) =  (1− ) + 1
4
 22, (∗|Case NR) = 9 (16), and

(∗|Case NR)  (∗|Case R) = 1
4
9

£
4 (1− ) +  2

¤
. We find that 9 − 4

£
4 (1− ) +  2

¤
=

8 (1− ) + 5 2 + 4
√
2

q

£
2 (1− ) +  2

¤
 0. Therefore, (∗|Case R)  (∗|Case NR) in

̂2  .

The proof for the impact of quality rating on Supplier L’s profit is similar to and simplier than

the proof for Supplier H. So we omit it.

(b) When 2 ≤   3: The mathematical expressions of the part (b) results are as follows.

When 2 ≤   1, then there exists ̂ () and  ∈ [̂3 ̂2) such that when   ̂ () and

 ∈ [̂3 ), the quality rating benefits Supplier H ((∗|Case R)  (∗|Case NR)). Otherwise, the

quality rating either hurts Supplier H or does not affect Supplier H’s profit. When 1 ≤  ≤ 2,

the quality rating either hurts Supplier H or does not affect Supplier H’s profit. When 2  , then

there exists 1 ∈ [̂ ̂] and 2 ∈ [̂ ̂3] such that when  
¡
9− 2

¢
2 and  ∈ (̂1 ̂2), the

quality rating benefits Supplier H. Otherwise, the quality rating either hurts Supplier H or does

not affect Supplier H’s profit. Here 1 = 242313, 2 = 244949.

There exists  ∈ [̂ ̂3] such that when  ∈ [̂ ), the quality rating benefits Supplier L

((∗ |Case R)  (∗ |Case NR)). Otherwise, the quality rating either hurts Supplier L or does not

affect Supplier L’s profit.

Next, we show the proof for the impact of quality rating on Supplier H’s profit. We have

̂  ̂  ̂3  ̂2 (see the proof of Proposition 4). To obtain the above results, we need to compare

(∗|Case R) with (∗|Case NR) at several critical points: ̂, ̂ ̂3 and ̂2. Clearly, (
∗
|Case R) =

(∗|Case NR) in   ̂. When  = ̂, we have

(∗|=̂ Case NR) =
1

4

h
7 + 2 − − (1 + )

p
( − 1) ( − 1 + 2)

i


(∗|=̂ Case R) =
1

4

h
1 + 3 − −

p
( − 1) ( − 1 + 2)

i


Note that (∗|=̂ Case NR)−(∗|=̂ Case R) is a decreasing function of  and that (∗|=̂ Case NR)−

(∗|=̂ Case R) = 0 at  = ̂1 = 2
¡
9− 9 + 52 − 3

¢

£
2 ( − 1)¤. We may conclude that
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when   ̂1, then (
∗
|=̂ Case NR)  (∗|=̂ Case R). Otherwise, (∗|=̂ Case NR) ≥

(∗|=̂ Case R). Note that ̂1 ≥ 12 in  ∈ [2 246378] and that   12 should be satisfied,

we claim that (∗|=̂ Case NR)  (∗|=̂ Case R) does not hold in  ∈ [2 246378].

When  = ̂, we have

(∗|=̂ Case NR) =
1

4

h
4 (1 + )− − 2 (1 + )

√
1 + 

i


(∗|=̂ Case R) =
1

4

h
4 − 2− − 2

√
1 + 

i


Solving (∗|=̂ Case NR) − (∗|=̂ Case R) = 0, we get  = ̂2 =
¡
9− 2

¢
2. Note that

(∗|=̂ Case NR) − (∗|=̂ Case R) is a decreasing function of , we claim that when   ̂2,

then (∗|=̂ Case NR)  (∗|=̂ Case R). Otherwise, (∗|=̂ Case NR) ≥ (∗|=̂ Case R).

Note that ̂2 ≥ 12 in  ∈ [2 2], where 2 = 244949. Since   12 should be satisfied, we claim

that (∗|=̂ Case NR)  (∗|=̂ Case R) does not hold in  ∈ [2 2].

Figure 4: (∗|=̂3 Case NR)  − (∗|=̂3 Case R) 
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When  = ̂3, we have

(∗|=̂3 Case NR)  =
1

2
(1 + ) (1− ) +



810

∙
 (1 + 4) + 2

√
2

q
2 + (1− )10

¸


(∗|=̂3 Case R)  =
1

2

³
7−  − −

p
( − 1) ( − 1 + 2)

´
.

where 10 = −1++
p
( − 1) ( − 1 + 2). Now, we examine the sign of (∗|=̂3 Case NR)  −

(∗|=̂3 Case R)  in  ∈ [2 3) and  ∈ (0 12). We may use the numerical method to find

conditions under which (∗|=̂3 Case NR) − (∗|=̂3 Case R)  0 holds. According to the nu-

merical analysis, when  ≥ 1 with 1 = 242313, (∗|=̂3 Case NR) − (∗|=̂3 Case R) ≥ 0

holds in  ∈ (0 12). When   1, then there exists a ̂ () such that when ̂ ()    12,

(∗|=̂3 Case NR)− (∗|=̂3 Case R)  0. Otherwise, (∗|=̂3 Case NR)− (∗|=̂3 Case R) ≥ 0.

Figure 5: (∗|=̂3− Case NR)  − (∗|=̂3− Case R) 

Since (∗|=̂3 Case R) is not a continuous function at  = ̂3, we need to compare (
∗
|Case NR)

with (∗|Case R) at  = ̂3 −  (  0 → 0). When  = ̂3 − , we have

(∗|=̂3− Case NR) =


2
(1 + ) (1− ) +



810

∙
 (1 + 4) + 2

√
2

q
2 + (1− )10

¸

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(∗|=̂3− Case R) =


2

³
1 +  − −

p
( − 1) ( − 1 + 2)

´
.

We may use numerical analysis to show that (∗|=̂3− Case NR)−(∗|=̂3− Case R)  0 holds in

 ∈ [2 3) and  ∈ (0 12). The numerical analysis shows that (∗|=̂3− Case NR)−(∗|=̂3− Case R)

reaches the minimum at ( ) = (2 12). And the minimum is 0462129  0.

Using a similar numerical analysis as shown above, we may show that (∗|=̂2 Case NR) −

(∗|=̂2 Case R)  0 holds in  ∈ [2 3) and  ∈ (0 12).

Next, we compare  (∗|Case NR)  with  (∗|Case R)  in [̂ ̂], (̂ ̂3), [̂3 ̂2] and

(̂2+∞). When  ∈ [̂ ̂], we have

 (∗|Case R)  = −1

 (∗|Case NR)  = −1−
 22

162


Clearly  (∗|Case R)    (∗|Case NR) . This means that if (∗|Case NR)  (∗|Case R)

at  = ̂, then there exists 1 ∈ [̂ ̂] such that when  ∈ (̂1 ̂], (∗|Case NR)  (∗|Case R)

holds. Otherwise, if (∗|Case NR) ≥ (∗|Case R) at  = ̂, then (
∗
|Case NR) ≥ (∗|Case R)

holds in  ∈ [̂ ̂].

When  ∈ (̂ ̂3)  we have

 (∗|Case R)  = −1

 (∗|Case NR)  = −
 22 (1 + 4)

162
− 2
√
2 2

¡
− +  2

¢
162

q
 22 + 2 (1− )



Wewant to show that  (∗|Case NR)   −1. That is, although both (∗|Case R) and (∗|Case NR)

are decreasing functions of , the slope of (∗|Case R) is steeper than that of (∗|Case NR). It

is straightforward to verify that 2 (∗|Case NR)   0, meaning that  (∗|Case NR)  ≥

 (∗|Case NR) |=3. Given  = 3, the other constraint  ∈ (̂ ̂3) can be further simplified to

min (̂|=3)    max (̂3|=3), which is equivalent to    
³
5
4
+

q
3
2

´
 . Let  =  with

 ∈
³
1 5
4
+
q

3
2

´
and insert  =  in  (∗|Case NR) |=3, we obtain  (∗|Case NR) |=3 =
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 ( ), a function of  and  with  ∈
³
1 5
4
+
q

3
2

´
and  ∈ (0 12). Using the numerical method

to analyze  ( ) in  ∈
³
1 5
4
+

q
3
2

´
and  ∈ (0 12), we find that  ( )   (1 12) =

− 1
320

¡−65− 18√10¢ = −0381003  −1. Thus,  (∗|Case NR)  ≥  (∗|Case NR) |=3 

−1. We have shown that (∗|=̂3− Case NR)  (∗|=̂3− Case R). Therefore, if (∗|Case NR) 

(∗|Case R) at  = ̂, then there exists 2 ∈ [̂ ̂3] such that when  ∈ [̂ ̂2), (∗|Case NR) 

(∗|Case R) holds. Otherwise, if (∗|Case NR) ≥ (∗|Case R) at  = ̂, then (
∗
|Case NR) ≥

(∗|Case R) holds in  ∈ (̂ ̂3).

When  ∈ [̂3 ̂2]  we have

 (∗|Case R)  = −1

 (∗|Case NR)  = −
 22 (1 + 4)

162
− 2
√
2 2

¡
− +  2

¢
162

q
 22 + 2 (1− )



Clearly,  (∗|Case R) and  (∗|Case NR)  are the same as those in  ∈ (̂ ̂3). Thus,  (∗|Case NR)  

−1. Note that we have shown that (∗|=̂2 Case NR)  (∗|=̂2 Case R) Therefore, if (∗|Case NR) 

(∗|Case R) at  = ̂3, then there exists  ∈ [̂3 ̂2) such that when  ∈ [̂3 ), (∗|Case NR) 

(∗|Case R) holds. Otherwise, if (∗|Case NR) ≥ (∗|Case R) at  = ̂3, then (
∗
|Case NR) ≥

(∗|Case R) holds in  ∈ [̂3 ̂2].

When  ∈ (̂2+∞), using a similar numerical analysis as shown above, we may show that

 (∗|Case R)    (∗|Case NR) . The slope of (∗|Case NR) is steeper than that of (∗|Case R).

We have shown that (∗|=̂2 Case NR)  (∗|=̂2 Case R). Further, lim→+∞ (∗|Case NR) −

(∗|Case R) = 
2
(1− ) ( − 1)  0. Thus, (∗|Case NR)  (∗|Case R) is satisfied in  ∈

(̂2+∞). Otherwise, we cannot have lim→+∞ (∗|Case NR)− (∗|Case R)  0.

To summarize the above results. We list the following major results.

(1) If 2   and  
¡
9− 2

¢
2, then (∗|=̂ Case NR)  (∗|=̂ Case R).

(2) If   1 and ̂ ()  , then (∗|=̂3 Case NR)  (∗|=̂3 Case R).

(3) If (∗|Case NR)  (∗|Case R) at  = ̂, then there exists 1 ∈ [̂ ̂] such that when

 ∈ (̂1 ̂], (∗|Case NR)  (∗|Case R).

(4) If (∗|Case NR)  (∗|Case R) at  = ̂, then there exists 2 ∈ [̂ ̂3] such that when
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 ∈ [̂ ̂2), (∗|Case NR)  (∗|Case R).

(5) If (∗|Case NR)  (∗|Case R) at  = ̂3, then there exists  ∈ [̂3 ̂2) such that when

 ∈ [̂3 ), (∗|Case NR)  (∗|Case R).

Combining these results together, we may get the result of the impact of quality rating on

Supplier H.

The proof for the impact of quality rating on Supplier L’s profit is similar to and simplier than

the proof for Supplier H. We omit it by leaving it to readers.

(c) The proof of part (c) is simplier than the proof of part (a) and (b). Thus, we omit it.

7.8 Proof of Proposition 6

Proof. We denote consumer surplus by .

(a) 1    2: We have ̂  ̂  ̂1  ̂2 (see the proof of Proposition 4). When

  ̂, (|Case R) = 2 = 2 ( − ) + 2 (1− ) [ (1− ) − ], where  = 1,

 =  ; (|Case NR) =  +  =
1
2
  [ () + ()] +   (1− )−  +  ( − ) +

(1− ) [ (1− ) − ], where  () = 1,  () = 1,  =  ,  =  ,  = 1. Thus,

(|Case R) = (|Case NR) = 2 ( − 1).

When ̂ ≤  ≤ ̂2, it can be shown that (|Case R) = 2 ( − 1). And it can be verified that

 [(|Case NR)]   0,  [(|Case R)]  = 0. Note that (|=̂ Case R) = 2 ( − 1) 

(|=̂ Case NR) = 1
2

¡
5−√1 + 2¢ ( − 1), we have (|=̂ Case R)  (|=̂ Case NR).

It follows that (|Case R)  (|Case NR) in ̂ ≤   ̂2.

When ̂2  , we have

(|Case R)− (|Case NR) =   ( − 1)
42

(7 + 11) ,

where 11 = 8
√
2

q

¡
− +  2

¢−3√2q
¡
2− 2+  2

¢
. It can be verified that 11  0.

Thus, (|Case R)  (|Case NR) in ̂2  .

(b) 2 ≤   3, We have ̂  ̂  ̂3  ̂2 (see the proof of Proposition 4).

When   ̂, it can be verified that (|Case R) = (|Case NR) = 0.
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Figure 6: Given ( )=(1,0.3), the quality rating hurts the high-type manufacturer in the shaded

region.

When ̂ ≤   ̂3, (|Case R) = 0. However, it can be shown that (|Case NR)  0. Thus,

(|Case NR)  (|Case R) in this −region.

When ̂3 ≤  ≤ ̂2, (|Case R) = 2 ( − 1). (|Case NR) is a decreasing function in

̂   ≤ ̂2. And we have (|=̂ Case NR) =  ( − 1)  2 ( − 1). Thus, (|Case R) 

(|Case NR) in this −region.

When ̂2  

(|Case R) =  ( − 1)


∙
2 (1− ) + 3 2 + 2

√
2

q

¡
− +  2

¢¸


(|Case NR) =  ( − 1)
4

∙
4 (1− ) + 3 2 + 2

√
2

q

¡
2− 2+  2

¢¸


It is straightforward to verify that (|Case R)  (|Case NR).

(c) 3 ≤ . (|Case R) = (|Case NR) = 0

7.9 Proof of Proposition 7

Proof. We denote social welfare by  .
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(a1) 1    2 and and  
(3+2)

2(1+)2
: We have ̂  ̂  ̂1  ̂2 (see the proof of Proposition

4).

When   ̂, it is easy to show that ( |Case R) = ( |Case NR) = 2 ( +   − ) 

When ̂ ≤  ≤ ̂, ( |Case R) = 2 ( +   − ), ( |Case NR) = (|Case NR) +  +

 = 2 (1 + )− − 1
2
  (2 + ) +  22

16
(3 + 2).

Thus,

( |Case R)− ( |Case NR) = 1

16
(4−  ) [(3 + 2) − 4]

We claim that (4−  )  0 in ̂ ≤  ≤ ̂ because 4 −  |=̂ = 
¡
1 +
√
1 + 2

¢
 0

and 4 −  |=̂ = 2
¡
1 +
√
1 + 

¢
 0. Now, consider the sign of (3 + 2)  − 4. We find

that (3 + 2)  − 4|=̂ = 
£
2 (1 + )− 1−√1 + 2¤  0. The last inequality holds because


£
2 (1 + )− 1−√1 + 2¤ is an increasing function of  in  

(3+2)

2(1+)2
, and


£
2 (1 + )− 1−√1 + 2¤ |

=
(3+2)

2(1+)2

= 0. We also find that

(3 + 2) −4|=̂ = 2
£
 − 1 + −√1 + 

¤
 0. The last inequality holds because 2

£
 − 1 + −√1 + 

¤
is an increasing function of ,   12, and 2

£
 − 1 + −√1 + 

¤ |= 1
2
= 

2
− 172474  0

(note that 1    2). Therefore,  = 1
4
  (3 + 2) is the only one root of ( |Case R) −

( |Case NR) = 0 in ̂ ≤  ≤ ̂. When ̂ ≤   1
4
  (3 + 2), ( |Case R)  ( |Case NR).

When 1
4
  (3 + 2)   ≤ ̂, ( |Case R)  ( |Case NR). When  = 1

4
  (3 + 2), ( |Case R) =

( |Case NR).

When ̂    ̂1, we have

( |Case R) = 2 ( + 1)− 2

( |Case NR) =  (1− ) (1 + 2) +
 22

8
(10 − 1) +

√
2

4
(3 − 1)

q

£
2 (1− ) +  2

¤


(21)

Let ∆ = ( |Case NR) − ( |Case R). We claim that ∆  0 in ̂    ̂1. To

show it, we follow three steps: (1) showing that ∆  0 at  = ̂, and (2) showing that
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 [( |Case NR)]    ( |Case R) .

Since ∆ is continuous at  = ̂, it is straightforward to show that ∆  0 at  = ̂ because

we have shown it in the case of ̂ ≤  ≤ ̂.

 ( |Case R)  = −2.  [( |Case NR)]  is a decreasing function of . Thus,  [( |Case NR)]  

 [( |Case NR)] |=2. We find that  [( |Case NR)] |=2 is an increasing function of

. Thus,  [( |Case NR)] |=2   [( |Case NR)] |=2=̂ . It is easy to verify that

 [( |Case NR)] |=2=̂  −2.

When ̂1 ≤  ≤ ̂2,

( |Case R) =  22

4
− +  (2 + 2 − ) 

and ( |Case NR) is given by eq.(21). Let ∆ = ( |Case NR) − ( |Case R). We want

to show that (1) ∆  0 at  = ̂1, (2) ∆  0 at  = ̂2, and (3)  [( |Case NR)]  

 ( |Case R)  in ̂1 ≤  ≤ ̂2. Then there must exist a  ∈ (̂1 ̂2) such that ∆  0 in

 ∈ [̂1 ), and ∆  0 in  ∈ ( ̂2].

It can be verified that ∆ |=̂1 is a decreasing function of . Thus, ∆ |=̂1 ≤ ∆ |=̂1=2.

It can be shown that the sign of ∆ |=̂1=2 is the same as the sign of 1 () = −4 +  − 4 +

4
√
2 + 2 − 2 , where  = √1 + 2. It is straightforward to verify that 1 ()  0 in 0    12.

Therefore, ∆ |=̂1  0.

We find that ∆ |=̂2 is also a decreasing function of . Thus, ∆ |=̂2  ∆ |=̂2=1. The

sign of∆ |=̂2=1 is the same as the sign of 2 () = 8+8 (1− )− (4− )+4
√
4− 2+ 4 − 4 ,

where  =
√
1 + . It is straightforward to verify that 2 ()  0 in 0    12. Therefore,

∆ |=̂2  0.

Let ∆ =  [( |Case NR)] −  ( |Case R) . We find that ∆ is a decreasing

function of . Thus, ∆  ∆ |=1. Insert  =  in ∆ |=1, we find that the sign of

∆ |=1 is determined by  (,), where

1 ( ) = 40
2 (1− ) + 162 −  (1− )

∙
7+ 4

q
22 + 4 (1− )

¸

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Since ̂1 ≤  ≤ ̂2 is equivalent to
1
2

¡
1 + +

√
1 + 2

¢ ≤  ≤ 1
2

¡
2 + + 2

√
1 + 

¢
, we have

1
2

¡
1 + +

√
1 + 2

¢ ≤  ≤ 1
2

¡
2 + + 2

√
1 + 

¢
. Note that 0    12, we have 1   

5
4
+

q
3
2
. Using the numerical method to find the minimum of 1 ( ) in  ∈ [0 12] and  ∈h

1 5
4
+

q
3
2

i
, we find that the mimimum of 1 ( ) is 1 ( ) |=1=12 = 21544  0. Therefore,

 [( |Case NR)]    ( |Case R)  in ̂1 ≤  ≤ ̂2. Therefore, we may conclude that there

exists a  ∈ (̂1 ̂2) such that ∆  0 in  ∈ [̂1 ), and ∆  0 in  ∈ ( ̂2].

When ̂2  ,

( |Case R) =  22

4
− +  (2 + 2 − ) 

and ( |Case NR) is given by eq.(21). Let ∆ = ( |Case NR) − ( |Case R). Since ̂2 =
1
2

¡
2 + + 2

√
1 + 

¢
and 0    12, the inequality ̂2   means that 2  . Let  =  ,

then ̂2   can be expressed as 0    12. We want to show that ∆ is a decreasing function

of . Inserting  =  in ∆, we find that the sign of ∆ is the same as the sign of

2 ( ) = −7+3
p
[4− 2 (2− )] − 8√2

p
[1−  (1− )] . Using the numerical method,

we find that the maximum of 2 ( ) is −751472 at ( ) = (0 12). Thus, ∆  0. It

follows that ∆  ∆ |=1. Inserting  =  in ∆ |=1 we find that the sign of ∆ |=1 is

the same as the sign of 3 ( ) = 8 (1− )+52+4
p
[4− 2 (2− )] . Using the numerical

method, we find that the minimum of 3 ( ) is 4 at ( ) = (12 0). Thus, ∆  0 holds in

̂2  .

The proof for part(a2), part(b) and part(c) is simplier than that for part(a1). Thus, we omit

it.
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